Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bio-energy retains its mitigation potential under elevated CO2.

Identifieur interne : 003365 ( Main/Exploration ); précédent : 003364; suivant : 003366

Bio-energy retains its mitigation potential under elevated CO2.

Auteurs : Marion Liberloo [Belgique] ; Sebastiaan Luyssaert ; Valentin Bellassen ; Sylvestre Njakou Djomo ; Martin Lukac ; Carlo Calfapietra ; Ivan A. Janssens ; Marcel R. Hoosbeek ; Nicolas Viovy ; Galina Churkina ; Giuseppe Scarascia-Mugnozza ; Reinhart Ceulemans

Source :

RBID : pubmed:20657833

Descripteurs français

English descriptors

Abstract

BACKGROUND

If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.

METHODOLOGY/MAIN FINDINGS

We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.

CONCLUSIONS/SIGNIFICANCE

Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.


DOI: 10.1371/journal.pone.0011648
PubMed: 20657833
PubMed Central: PMC2906505


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bio-energy retains its mitigation potential under elevated CO2.</title>
<author>
<name sortKey="Liberloo, Marion" sort="Liberloo, Marion" uniqKey="Liberloo M" first="Marion" last="Liberloo">Marion Liberloo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Antwerp (UA), Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, University of Antwerp (UA), Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luyssaert, Sebastiaan" sort="Luyssaert, Sebastiaan" uniqKey="Luyssaert S" first="Sebastiaan" last="Luyssaert">Sebastiaan Luyssaert</name>
</author>
<author>
<name sortKey="Bellassen, Valentin" sort="Bellassen, Valentin" uniqKey="Bellassen V" first="Valentin" last="Bellassen">Valentin Bellassen</name>
</author>
<author>
<name sortKey="Njakou Djomo, Sylvestre" sort="Njakou Djomo, Sylvestre" uniqKey="Njakou Djomo S" first="Sylvestre" last="Njakou Djomo">Sylvestre Njakou Djomo</name>
</author>
<author>
<name sortKey="Lukac, Martin" sort="Lukac, Martin" uniqKey="Lukac M" first="Martin" last="Lukac">Martin Lukac</name>
</author>
<author>
<name sortKey="Calfapietra, Carlo" sort="Calfapietra, Carlo" uniqKey="Calfapietra C" first="Carlo" last="Calfapietra">Carlo Calfapietra</name>
</author>
<author>
<name sortKey="Janssens, Ivan A" sort="Janssens, Ivan A" uniqKey="Janssens I" first="Ivan A" last="Janssens">Ivan A. Janssens</name>
</author>
<author>
<name sortKey="Hoosbeek, Marcel R" sort="Hoosbeek, Marcel R" uniqKey="Hoosbeek M" first="Marcel R" last="Hoosbeek">Marcel R. Hoosbeek</name>
</author>
<author>
<name sortKey="Viovy, Nicolas" sort="Viovy, Nicolas" uniqKey="Viovy N" first="Nicolas" last="Viovy">Nicolas Viovy</name>
</author>
<author>
<name sortKey="Churkina, Galina" sort="Churkina, Galina" uniqKey="Churkina G" first="Galina" last="Churkina">Galina Churkina</name>
</author>
<author>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2010">2010</date>
<idno type="RBID">pubmed:20657833</idno>
<idno type="pmid">20657833</idno>
<idno type="doi">10.1371/journal.pone.0011648</idno>
<idno type="pmc">PMC2906505</idno>
<idno type="wicri:Area/Main/Corpus">003113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">003113</idno>
<idno type="wicri:Area/Main/Curation">003113</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">003113</idno>
<idno type="wicri:Area/Main/Exploration">003113</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bio-energy retains its mitigation potential under elevated CO2.</title>
<author>
<name sortKey="Liberloo, Marion" sort="Liberloo, Marion" uniqKey="Liberloo M" first="Marion" last="Liberloo">Marion Liberloo</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Biology, University of Antwerp (UA), Wilrijk, Belgium.</nlm:affiliation>
<country xml:lang="fr">Belgique</country>
<wicri:regionArea>Department of Biology, University of Antwerp (UA), Wilrijk</wicri:regionArea>
<orgName type="university">Université d'Anvers</orgName>
<placeName>
<settlement type="city">Anvers</settlement>
<region>Région flamande</region>
<region type="district" nuts="2">Province d'Anvers</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Luyssaert, Sebastiaan" sort="Luyssaert, Sebastiaan" uniqKey="Luyssaert S" first="Sebastiaan" last="Luyssaert">Sebastiaan Luyssaert</name>
</author>
<author>
<name sortKey="Bellassen, Valentin" sort="Bellassen, Valentin" uniqKey="Bellassen V" first="Valentin" last="Bellassen">Valentin Bellassen</name>
</author>
<author>
<name sortKey="Njakou Djomo, Sylvestre" sort="Njakou Djomo, Sylvestre" uniqKey="Njakou Djomo S" first="Sylvestre" last="Njakou Djomo">Sylvestre Njakou Djomo</name>
</author>
<author>
<name sortKey="Lukac, Martin" sort="Lukac, Martin" uniqKey="Lukac M" first="Martin" last="Lukac">Martin Lukac</name>
</author>
<author>
<name sortKey="Calfapietra, Carlo" sort="Calfapietra, Carlo" uniqKey="Calfapietra C" first="Carlo" last="Calfapietra">Carlo Calfapietra</name>
</author>
<author>
<name sortKey="Janssens, Ivan A" sort="Janssens, Ivan A" uniqKey="Janssens I" first="Ivan A" last="Janssens">Ivan A. Janssens</name>
</author>
<author>
<name sortKey="Hoosbeek, Marcel R" sort="Hoosbeek, Marcel R" uniqKey="Hoosbeek M" first="Marcel R" last="Hoosbeek">Marcel R. Hoosbeek</name>
</author>
<author>
<name sortKey="Viovy, Nicolas" sort="Viovy, Nicolas" uniqKey="Viovy N" first="Nicolas" last="Viovy">Nicolas Viovy</name>
</author>
<author>
<name sortKey="Churkina, Galina" sort="Churkina, Galina" uniqKey="Churkina G" first="Galina" last="Churkina">Galina Churkina</name>
</author>
<author>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
</author>
<author>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
</author>
</analytic>
<series>
<title level="j">PloS one</title>
<idno type="eISSN">1932-6203</idno>
<imprint>
<date when="2010" type="published">2010</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biofuels (MeSH)</term>
<term>Biomass (MeSH)</term>
<term>Carbon Dioxide (MeSH)</term>
<term>Energy Metabolism (MeSH)</term>
<term>Plant Development (MeSH)</term>
<term>Plants (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Biocarburants (MeSH)</term>
<term>Biomasse (MeSH)</term>
<term>Dioxyde de carbone (MeSH)</term>
<term>Développement des plantes (MeSH)</term>
<term>Métabolisme énergétique (MeSH)</term>
<term>Plantes (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" xml:lang="en">
<term>Biofuels</term>
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plants</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Plantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biomass</term>
<term>Energy Metabolism</term>
<term>Plant Development</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocarburants</term>
<term>Biomasse</term>
<term>Dioxyde de carbone</term>
<term>Développement des plantes</term>
<term>Métabolisme énergétique</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">
<p>
<b>BACKGROUND</b>
</p>
<p>If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>METHODOLOGY/MAIN FINDINGS</b>
</p>
<p>We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.</p>
</div>
<div type="abstract" xml:lang="en">
<p>
<b>CONCLUSIONS/SIGNIFICANCE</b>
</p>
<p>Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.</p>
</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">20657833</PMID>
<DateCompleted>
<Year>2010</Year>
<Month>10</Month>
<Day>28</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Electronic">
<Journal>
<ISSN IssnType="Electronic">1932-6203</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>5</Volume>
<Issue>7</Issue>
<PubDate>
<Year>2010</Year>
<Month>Jul</Month>
<Day>19</Day>
</PubDate>
</JournalIssue>
<Title>PloS one</Title>
<ISOAbbreviation>PLoS One</ISOAbbreviation>
</Journal>
<ArticleTitle>Bio-energy retains its mitigation potential under elevated CO2.</ArticleTitle>
<Pagination>
<MedlinePgn>e11648</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1371/journal.pone.0011648</ELocationID>
<Abstract>
<AbstractText Label="BACKGROUND" NlmCategory="BACKGROUND">If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management.</AbstractText>
<AbstractText Label="METHODOLOGY/MAIN FINDINGS" NlmCategory="RESULTS">We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance.</AbstractText>
<AbstractText Label="CONCLUSIONS/SIGNIFICANCE" NlmCategory="CONCLUSIONS">Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Liberloo</LastName>
<ForeName>Marion</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Biology, University of Antwerp (UA), Wilrijk, Belgium.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Luyssaert</LastName>
<ForeName>Sebastiaan</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Bellassen</LastName>
<ForeName>Valentin</ForeName>
<Initials>V</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Njakou Djomo</LastName>
<ForeName>Sylvestre</ForeName>
<Initials>S</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lukac</LastName>
<ForeName>Martin</ForeName>
<Initials>M</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Calfapietra</LastName>
<ForeName>Carlo</ForeName>
<Initials>C</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Janssens</LastName>
<ForeName>Ivan A</ForeName>
<Initials>IA</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Hoosbeek</LastName>
<ForeName>Marcel R</ForeName>
<Initials>MR</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Viovy</LastName>
<ForeName>Nicolas</ForeName>
<Initials>N</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Churkina</LastName>
<ForeName>Galina</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Scarascia-Mugnozza</LastName>
<ForeName>Giuseppe</ForeName>
<Initials>G</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Ceulemans</LastName>
<ForeName>Reinhart</ForeName>
<Initials>R</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2010</Year>
<Month>07</Month>
<Day>19</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>PLoS One</MedlineTA>
<NlmUniqueID>101285081</NlmUniqueID>
<ISSNLinking>1932-6203</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D056804">Biofuels</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D056804" MajorTopicYN="Y">Biofuels</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018533" MajorTopicYN="N">Biomass</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="Y">Carbon Dioxide</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004734" MajorTopicYN="N">Energy Metabolism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D063245" MajorTopicYN="N">Plant Development</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010944" MajorTopicYN="N">Plants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2010</Year>
<Month>03</Month>
<Day>10</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2010</Year>
<Month>06</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2010</Year>
<Month>7</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2010</Year>
<Month>10</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">20657833</ArticleId>
<ArticleId IdType="doi">10.1371/journal.pone.0011648</ArticleId>
<ArticleId IdType="pmc">PMC2906505</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2005 Dec 13;102(50):18052-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330779</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2009 Jun 23;106(25):10219-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19497862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2005 Feb;25(2):179-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15574399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Jul 17;325(5938):270-1</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19608900</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2000 Sep 15;289(5486):1922-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10988070</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2006 Dec 8;314(5805):1598-600</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17158327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2001 May 24;411(6836):469-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11373677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Jan 15;105(2):464-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18180449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1235-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258862</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Aug;23(12):805-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12865246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11206-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16837571</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2009;182(2):331-46</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19207687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2007 Nov 8;450(7167):277-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17994095</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2008 Feb 29;319(5867):1238-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18258860</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2005 Oct;137(3):525-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16005764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2006 Apr 13;440(7086):922-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16612381</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Belgique</li>
</country>
<region>
<li>Province d'Anvers</li>
<li>Région flamande</li>
</region>
<settlement>
<li>Anvers</li>
</settlement>
<orgName>
<li>Université d'Anvers</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Bellassen, Valentin" sort="Bellassen, Valentin" uniqKey="Bellassen V" first="Valentin" last="Bellassen">Valentin Bellassen</name>
<name sortKey="Calfapietra, Carlo" sort="Calfapietra, Carlo" uniqKey="Calfapietra C" first="Carlo" last="Calfapietra">Carlo Calfapietra</name>
<name sortKey="Ceulemans, Reinhart" sort="Ceulemans, Reinhart" uniqKey="Ceulemans R" first="Reinhart" last="Ceulemans">Reinhart Ceulemans</name>
<name sortKey="Churkina, Galina" sort="Churkina, Galina" uniqKey="Churkina G" first="Galina" last="Churkina">Galina Churkina</name>
<name sortKey="Hoosbeek, Marcel R" sort="Hoosbeek, Marcel R" uniqKey="Hoosbeek M" first="Marcel R" last="Hoosbeek">Marcel R. Hoosbeek</name>
<name sortKey="Janssens, Ivan A" sort="Janssens, Ivan A" uniqKey="Janssens I" first="Ivan A" last="Janssens">Ivan A. Janssens</name>
<name sortKey="Lukac, Martin" sort="Lukac, Martin" uniqKey="Lukac M" first="Martin" last="Lukac">Martin Lukac</name>
<name sortKey="Luyssaert, Sebastiaan" sort="Luyssaert, Sebastiaan" uniqKey="Luyssaert S" first="Sebastiaan" last="Luyssaert">Sebastiaan Luyssaert</name>
<name sortKey="Njakou Djomo, Sylvestre" sort="Njakou Djomo, Sylvestre" uniqKey="Njakou Djomo S" first="Sylvestre" last="Njakou Djomo">Sylvestre Njakou Djomo</name>
<name sortKey="Scarascia Mugnozza, Giuseppe" sort="Scarascia Mugnozza, Giuseppe" uniqKey="Scarascia Mugnozza G" first="Giuseppe" last="Scarascia-Mugnozza">Giuseppe Scarascia-Mugnozza</name>
<name sortKey="Viovy, Nicolas" sort="Viovy, Nicolas" uniqKey="Viovy N" first="Nicolas" last="Viovy">Nicolas Viovy</name>
</noCountry>
<country name="Belgique">
<region name="Région flamande">
<name sortKey="Liberloo, Marion" sort="Liberloo, Marion" uniqKey="Liberloo M" first="Marion" last="Liberloo">Marion Liberloo</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 003365 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 003365 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:20657833
   |texte=   Bio-energy retains its mitigation potential under elevated CO2.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:20657833" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020